top of page

How to Choose Statistical Test in Clinical Research: T-test, Mann-Whitney U / Ranksum, ANOVA, Kruskal-Wallis, Paired t-test, Wilcoxon Signed-Rank, Chi-square, Fisher’s Exact, Log-rank, Cox regression

Updated: Jun 11



Step 1 Identify the Dependent Variable Y

Y (Outcome) Example

Data Type

Typical Scale / Notes

Blood-loss volume (mL), Hb level (g/dL)

Continuous

Numeric, theoretically infinite decimals

Gender (male / female)

Binary

2 ordered or unordered categories

Mortality (yes / no)

Binary

Pain score (1–10)

Ordinal

Ranked but distances unequal

Satisfaction (low / med / high)

Ordinal

Survival time (days)

Time-to-Event

Event plus censoring

Blood group (A / B / AB / O)

Categorical > 2 (Nominal)

Unordered, >2

Seizure count per month

Count

Non-negative integers, often skewed

Proportion of wound infections (%)

Proportion / Rate

Bounded 0–1; often with different denominators


Step 2 Define the Independent Groups X

  1. How many groups? (2 vs > 2)

  2. Structure:

    • Independent groups (different patients / subjects)

    • Paired / repeated (same subject measured twice or more)

(If X itself is continuous—e.g., dosage in mg—see “When to use regression” below.)

Step 3 If Y Is Continuous → Check Normality

stata: hist postopbleeding, normal swilk postopbleeding

  • p > 0.05 → “looks normal” → parametric tests

  • p < 0.05 → not normal → non-parametric tests (or transform / use GLM)


Step 4 Master Test-Selection Table

Dependent Y

# Groups

Structure

If Normal / Large-Sample

If Not Normal / Small n / Ordinal

Continuous

2

Independent

Student t-test

Mann-Whitney U / Wilcoxon rank-sum


> 2

Independent

One-way ANOVA

Kruskal-Wallis


2

Paired

Paired t-test

Wilcoxon signed-rank


> 2

Repeated

Repeated-measures ANOVA

Friedman test

Binary

2 or > 2

Independent

χ² test of independence

Fisher exact (if any cell < 5)

Categorical > 2 (Nominal)

2 or > 2

Independent

χ² test (RxC)

Fisher exact (if sparse)

Ordinal

2

Independent

Mann-Whitney / Wilcoxon rank-sum


> 2

Independent

Kruskal-Wallis

Count

2 or > 2

Independent

Poisson test or negative-binomial

Proportion / Rate

2

Independent

z-test for two proportions

Fisher exact

Time-to-Event

2 or > 2

Independent

Log-rank test / Cox proportional-hazards


Step 5 When to Use Regression Instead of a Simple Test

If you need …

Regression of choice

Adjust for ≥1 covariate (age, sex, baseline Hb, …)

Linear (continuous Y), logistic (binary Y), multinomial logistic (nominal Y > 2), ordinal logistic, Poisson/negative-binomial (counts), Cox (time-to-event)

Predict risk / odds / mean rather than test difference

Same as above

Model continuous X (e.g., dose in mg)

Include X as continuous term or use spline

Handle interaction terms (e.g., Tx × sex)

Any generalized linear model (GLM)


Step 6 Example Walk-Throughs

  1. Post-op bleeding (mL) across 3 TXA dose groups

    • Y: Continuous

    • 2 independent groups

    • Normality p < 0.05 → Not normal

    • → Kruskal-Wallis

    stata: kwallis postopbleeding, by(txagroup)


  2. Infection type (A/B/C) by TXA vs no TXA

    • Y: Categorical (>2)

    • 2 independent groups

    • → χ² test (2×3 table)

    stata: tabi 20 5 3 \ 15 12 8 , chi2


  3. Seizure counts pre- vs post-drug in same patients

    • Y: Count, paired

    • Small n, skewed

    • → Wilcoxon signed-rank or Poisson GLMM if covariates needed

  4. 30-day survival across 4 surgical centers

    • Y: Time-to-event

    • 2 independent groups

    • → Log-rank test; follow-up Cox model for adjustment

    stata: sts test center stcox i.center age sex


Quick Recap

  1. Start with Y: Identify its scale.

  2. Count & classify X groups: 2 vs > 2, independent vs paired.

  3. If Y is continuous: Check normality.

  4. Plug into the table to pick the test.

  5. Need adjustment or continuous X? → Move to regression.

Recent Posts

See All

Comments

Rated 0 out of 5 stars.
No ratings yet

Add a rating
Post: Blog2_Post

​Message for International and Thai Readers Understanding My Medical Context in Thailand

Message for International and Thai Readers Understanding My Broader Content Beyond Medicine

bottom of page