top of page

Causal vs Predictive Analysis: How DEPTh Typing Shapes Clinical Research Design

  • Writer: Mayta
    Mayta
  • 7 hours ago
  • 2 min read

The analysis design stage forces a fundamental decision:

🧠 Are we explaining a cause, or predicting an event?

This logic determines how we build occurrence equations—and whether our statistical model needs confounder adjustment or predictive calibration.


🧠 Two Core Logics in Analysis Design

DEPTh Category

Occurrence Equation Template

Logic Type

Research Intent

Etiognostic

Y = f(X | confounders)

Causal

Explain: “Is X a cause of Y?”

Therapeutic

Y = f(Treatment | confounders)

Causal

Explain: “Does treatment lead to outcome?”

Diagnostic

Y = f(Signs, Symptoms, History, Labs)

Predictive

Predict disease status

Prognostic

Y = f(Biomarkers, Vitals, Clinical Data)

Predictive

Forecast future events


⚖️ Causal Occurrence Relations

Common in etiognostic and therapeutic studies. The goal is to test whether and how strongly X affects Y—while controlling for confounding and ensuring proper temporal order.

Examples:

  • Etiognostic“Does heavy caffeine intake increase risk of first-trimester miscarriage?”



  • 👉 เพื่อหาว่าการบริโภคคาเฟอีนมาก เป็น สาเหตุ ของการแท้งบุตรหรือไม่

  • Therapeutic“Does early mobilization reduce length of hospital stay in elderly hip fracture patients?”



  • 👉 เพื่อพิสูจน์ว่า intervention (early mobilization) มีผลต่อ outcome (length of stay)

🔮 Predictive Occurrence Relations

Found in diagnostic and prognostic research. Focused not on why, but on how well we can anticipate an outcome based on measurable variables.

Examples:

  • Diagnostic: “Which symptoms and signs best predict acute appendicitis in children?”



  • 👉 เพื่อประเมินว่า ข้อมูลใดช่วยในการวินิจฉัย โรคได้

  • Prognostic“Which clinical variables predict ICU admission in COVID-19 patients?”



  • 👉 เพื่อหาว่าตัวแปรใด พยากรณ์ การเข้า ICU ได้ดีที่สุด

🧩 Case Revisit: Benzodiazepine–Delirium

Let’s plug this back into a classic clinical puzzle:

  • DEPTh Type: Etiognostic

  • Logic: Causal

  • Equation:



  • 👉 จุดประสงค์: ต้องการทราบว่า ยาเบนโซ เป็น สาเหตุให้เกิด ภาวะเพ้อหรือไม่ (ไม่ใช่แค่คาดเดา)

🧠 Key Takeaways

  • DEPTh typing clarifies whether your model should explain causality or predict outcomes.

  • Causal designs (Etiognostic, Therapeutic) must address confounding and temporality.

  • Predictive designs (Diagnostic, Prognostic) prioritize discrimination and calibration.

  • Let your research question guide your equation logic, not the other way around.

Recent Posts

See All

Comments

Rated 0 out of 5 stars.
No ratings yet

Add a rating
Post: Blog2_Post

​Message for International and Thai Readers Understanding My Medical Context in Thailand

Message for International and Thai Readers Understanding My Broader Content Beyond Medicine

bottom of page