Causal vs Predictive Analysis: How DEPTh Typing Shapes Clinical Research Design
- Mayta
- 7 hours ago
- 2 min read
The analysis design stage forces a fundamental decision:
🧠 Are we explaining a cause, or predicting an event?
This logic determines how we build occurrence equations—and whether our statistical model needs confounder adjustment or predictive calibration.
🧠 Two Core Logics in Analysis Design
DEPTh Category | Occurrence Equation Template | Logic Type | Research Intent |
Etiognostic | Y = f(X | confounders) | Causal | Explain: “Is X a cause of Y?” |
Therapeutic | Y = f(Treatment | confounders) | Causal | Explain: “Does treatment lead to outcome?” |
Diagnostic | Y = f(Signs, Symptoms, History, Labs) | Predictive | Predict disease status |
Prognostic | Y = f(Biomarkers, Vitals, Clinical Data) | Predictive | Forecast future events |
⚖️ Causal Occurrence Relations
Common in etiognostic and therapeutic studies. The goal is to test whether and how strongly X affects Y—while controlling for confounding and ensuring proper temporal order.
Examples:
Etiognostic“Does heavy caffeine intake increase risk of first-trimester miscarriage?”
👉 เพื่อหาว่าการบริโภคคาเฟอีนมาก เป็น สาเหตุ ของการแท้งบุตรหรือไม่
Therapeutic“Does early mobilization reduce length of hospital stay in elderly hip fracture patients?”
👉 เพื่อพิสูจน์ว่า intervention (early mobilization) มีผลต่อ outcome (length of stay)
🔮 Predictive Occurrence Relations
Found in diagnostic and prognostic research. Focused not on why, but on how well we can anticipate an outcome based on measurable variables.
Examples:
Diagnostic: “Which symptoms and signs best predict acute appendicitis in children?”
👉 เพื่อประเมินว่า ข้อมูลใดช่วยในการวินิจฉัย โรคได้
Prognostic“Which clinical variables predict ICU admission in COVID-19 patients?”
👉 เพื่อหาว่าตัวแปรใด พยากรณ์ การเข้า ICU ได้ดีที่สุด
🧩 Case Revisit: Benzodiazepine–Delirium
Let’s plug this back into a classic clinical puzzle:
DEPTh Type: Etiognostic
Logic: Causal
Equation:
👉 จุดประสงค์: ต้องการทราบว่า ยาเบนโซ เป็น สาเหตุให้เกิด ภาวะเพ้อหรือไม่ (ไม่ใช่แค่คาดเดา)
🧠 Key Takeaways
DEPTh typing clarifies whether your model should explain causality or predict outcomes.
Causal designs (Etiognostic, Therapeutic) must address confounding and temporality.
Predictive designs (Diagnostic, Prognostic) prioritize discrimination and calibration.
Let your research question guide your equation logic, not the other way around.
Comments